Minggu, 27 Oktober 2013

F1A112007_midnumerik

JAWABAN UJIAN MID TERTULIS
METODE NUMERIK

OLEH:
SARWIATI
F1A112007

 
PROGRAM STUDI MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS HALU OLEO
KENDARI
2013
BAGIAN I. Mencari Akar Persamaan Non Linear
1. Mencari nilai x yang memenuhi persamaan x2 – 7 = 0 dengan Metode Bagi Dua.
f(x)=x^2-7=0 dengan interval [2,3]

nanbnxnf(an)f(bn)f(xn)eh
1232.5-32-0.75
22.532.75-0.7520.56259.09%
32.52.752.625-0.750.5625-0.109375-4.76%
42.6252.752.6875-0.1093750.56250.222656252.33%
52.6252.68752.65625-0.1093750.222656250.055664063-1.18%
62.6252.656252.640625-0.1093750.055664063-0.027099609-0.59%
72.6406252.656252.6484375-0.0270996090.0556640630.0142211910.29%
82.6406252.64843752.64453125-0.0270996090.014221191-0.006454468-0.15%
92.644531252.64843752.646484375-0.0064544680.0142211910.0038795470.07%
102.644531252.6464843752.645507813-0.0064544680.003879547-0.001288414-0.04%
112.6455078132.6464843752.645996094-0.0012884140.0038795470.0012953280.02%
122.6455078132.6459960942.645751953-0.0012884140.0012953283.39746E-06-0.01%
132.6455078132.6457519532.645629883-0.0012884143.39746E-06-0.0006425230.00%
142.6456298832.6457519532.645690918-0.0006425233.39746E-06-0.0003195670.00%
152.6456909182.6457519532.645721436-0.0003195673.39746E-06-0.0001580850.00%
Keterangan:
n : nomor iterasi
a : ujung kiri
b : ujung kanan
xn : hampiran akar
eh : persen galat relatif
2. Mencari nilai x yang memenuhi persamaan x^2 – 7 = 0 dengan Metode Posisi Palsu.
f(x)=x^2-7=0 dengan interval [2,3]
nanbnxnf(an)f(bn)f(xn)eh
1232.6-3.000000002-0.24000000
22.632.642857143-0.240000002-0.015306121.62162162%
32.64285714332.64556962-0.015306122-0.000961380.10252905%
42.6455696232.64573991-0.000961382-0.000060330.00643639%
52.6457399132.645750596-0.000060332-0.000003790.00040387%
62.64575059632.645751266-0.000003792-0.000000240.00002534%
72.64575126632.645751308-0.000000242-0.000000010.00000159%
82.64575130832.645751311-0.0000000120.000000000.00000010%
92.64575131132.6457513110.0000000020.000000000.00000001%
102.64575131132.6457513110.0000000020.000000000.00000000%
112.64575131132.6457513110.0000000020.000000000.00000000%
122.64575131132.6457513110.0000000020.000000000.00000000%
132.64575131132.6457513110.0000000020.000000000.00000000%
142.64575131132.6457513110.0000000020.000000000.00000000%
152.64575131132.6457513110.0000000020.000000000.00000000%
Keterangan:
n : nomor iterasi
a : ujung kiri
b : ujung kanan
xn : hampiran akar
eh : persen galat relatif
3. Mencari nilai x yang memenuhi persamaan x^2 – 7 = 0 dengan Metode Iterasi Titik Tetap.
f(x)=x^2-7=0 dengan tebakan awal x0 = 1,5
Kasus I. x=7/x
nxeh
01.5
14.66666666767.86%
21.5-211.11%
34.66666666767.86%
41.5-211.11%
54.66666666767.86%
61.5-211.11%
74.66666666767.86%
81.5-211.11%
94.66666666767.86%
101.5-211.11%
114.66666666767.86%
121.5-211.11%
134.66666666767.86%
141.5-211.11%
154.66666666767.86%
161.5-211.11%
174.66666666767.86%
181.5-211.11%
194.66666666767.86%
201.5-211.11%
214.66666666767.86%
221.5-211.11%
234.66666666767.86%
241.5-211.11%
254.66666666767.86%
261.5-211.11%
274.66666666767.86%
281.5-211.11%
Keterangan:
n : nomor iterasi
xn : hampiran akar
eh : persen galat relatif
Kasus II. x=x-(x^2-7)
nxeh
01.5
16.2576.00%
2-25.8125124.21%
3-685.097656396.23%
4-470036.896399.85%
5-2.20935E+11100.00%
6-4.88123E+22100.00%
7-2.38264E+45100.00%
8-5.677E+90100.00%
9-3.2228E+181100.00%
Kasus III. x=x-(x^2-7)/4

nxeh
01.5
12.687544.19%
22.631835938-2.12%
32.6501958370.69%
42.644311343-0.22%
52.6462157230.07%
62.64560131-0.02%
72.6457997370.01%
82.6457356750.00%
92.645756360.00%
102.6457496810.00%
112.6457518370.00%
122.6457511410.00%
132.6457513660.00%
142.6457512930.00%
152.6457513170.00%
162.6457513090.00%
172.6457513120.00%
182.6457513110.00%
192.6457513110.00%
202.6457513110.00%
212.6457513110.00%
222.6457513110.00%
232.6457513110.00%
242.6457513110.00%
252.6457513110.00%
262.6457513110.00%
272.6457513110.00%
282.6457513110.00%

4. Mencari nilai x yang memenuhi persamaan x2 – 7 = 0 dengan Metode Newton Raphson.
f(x)=x^2-7=0 dengan tebakan awal x0 = 1,5
f(x)=x^2-7≫≫≫f^' (x)=2x
≫x=x-(x^2-7)/2x

nxneh
01.5
13.08333333351.35%
22.676801802-15.19%
32.645931402-1.17%
42.645751317-0.01%
52.6457513110.00%
Keterangan:
n : nomor iterasi
xn : hampiran akar
eh : persen galat relative
5. Metode garis potong untuk menyelesaikan x^2-7=0 dengan tebakan awal 1 dan 4.
f(x)=x^2-7 dengan: tebakan awal pertama = 1 ; tebakan awal kedua = 4.

nxneh
nxneh
-11
04
12.2
22.54838709713.67%
32.6548913044.01%
42.645580283-0.35%
52.6457510160.01%
62.6457513110.00%
Keterangan:
n : nomor iterasi
xn : hampiran akar
eh : persen galat relatif
BAGIAN II. Menyelesaikan sistem persamaan linear
Menentukan nilai x1, x2, x3 dari sistem persamaan linear:
9x1 + 2x2 + 9x3 = 40
2x1 + 6x2 + 2x3 = 20
2x1 + 2x2 + 6x3 = 24
Dengan menggunakan metode:
1. Metode Jacoby
9x1 + 2x2 + 9x3 = 40 ≫≫≫ x1 = (40 - 2x2 - 9x3)/9
2x1 + 6x2 + 2x3 = 20 ≫≫≫ x2 = (20 - 2x1 - 2x3)/6
2x1 + 2x2 + 6x3 = 24 ≫≫≫ x3 = (24 - 2x1 – 2x2)/6

kx1x2x3
0000
14.4444444443.3333334
2-0.2962962960.5185191.407407
32.92181072.9629633.925926
4-0.1399176951.0507542.038409
52.1725346752.7005033.696388
60.1479449271.3770262.375654
71.762784582.4921343.491676
80.3989605621.5818462.581694
91.5112291132.3397823.339731
100.5847618921.7163472.71633
111.3467044022.2329693.232964
120.7152651751.8067772.806775
131.2361630132.159323.159319
140.8052764071.8681732.868172
151.1611225882.108853.10885
160.8669606911.9100092.910009
171.109988992.0743433.074343
180.9091358091.9385562.938556
191.0750983952.0507693.050769
200.9379484581.9580442.958044
211.051279492.0346693.034669
220.9576265791.971352.97135
231.0350161182.0236743.023674
240.9710647151.9804372.980437
251.0239109212.0161663.016166
260.9802412441.9866412.986641
271.0163277382.0110393.011039
280.9865075571.9908782.990878
291.0111495232.0075383.007538
300.9907865711.9937712.993771
311.0076135412.0051483.005148
320.9937085341.9957462.995746
331.0051989682.0035153.003515
340.9957038211.9970952.997095
351.0035501582.00243.0024
360.9970663191.9980172.998017
371.0024242542.0016393.001639
380.9979967121.9986462.998646
391.0016554222.0011193.001119
400.9986320381.9990752.999075
411.0011304182.0007643.000764
420.9990658761.9993682.999368
431.0007719152.0005223.000522
440.9993621261.9995692.999569
451.0005271092.0003563.000356
460.9995644221.9997062.999706
471.0003599412.0002433.000243
480.9997025621.9997992.999799
491.0002457882.0001663.000166
500.9997968921.9998632.999863
511.0001678392.0001133.000113
520.9998613061.9999062.999906
531.000114612.0000773.000077
540.9999052921.9999362.999936
551.0000782622.0000533.000053
560.9999353281.9999562.999956
571.0000534422.0000363.000036
580.9999558381.999972.99997
591.0000364932.0000253.000025
600.9999698441.999982.99998
611.000024922.0000173.000017
620.9999794071.9999862.999986
631.0000170172.0000123.000012
640.9999859381.999992.99999
651.000011622.0000083.000008
660.9999903981.9999942.999994
671.0000079352.0000053.000005
680.9999934431.9999962.999996
691.0000054182.0000043.000004
700.9999955231.9999972.999997
711.00000372.0000033.000003
720.9999969431.9999982.999998
731.0000025272.0000023.000002
740.9999979121.9999992.999999
751.0000017252.0000013.000001
760.9999985741.9999992.999999
771.0000011782.0000013.000001
780.9999990261.9999992.999999
791.0000008042.0000013.000001
800.99999933523
811.00000054923
820.99999954623
831.00000037523
840.9999996923
851.00000025623
860.99999978823
871.00000017523
880.99999985523
891.00000011923
900.99999990123
911.00000008223
920.99999993323
931.00000005623
940.99999995423
951.00000003823
960.99999996923
971.00000002623
980.99999997923
991.00000001823
1000.99999998523
1011.00000001223
1020.9999999923
1031.00000000823
1040.99999999323
1051.00000000623
1060.99999999523
1071.00000000423
1080.99999999723
1091.00000000323
1100.99999999823
1111.00000000223
1120.99999999923
1131.00000000123
1140.99999999923
1151.00000000123
1160.99999999923
1171.00000000123
118123
119123
120123
121123
Jadi:
x1 = 1
x2 = 2
x3 = 3
Keterangan:
k : nomor iterasi
2. Metode Gauss Seidel
9x1 + 2x2 + 9x3 = 40 ≫≫≫ x1 = (40 - 2x2 - 9x3)/9
2x1 + 6x2 + 2x3 = 20 ≫≫≫ x2 = (20 - 2x1 - 2x3)/6
2x1 + 2x2 + 6x3 = 24 ≫≫≫ x3 = (24 - 2x1 – 2x2)/6

kx1x2x3
0000
14.4444441.8518521.901235
22.1316871.9890262.626429
31.3760101.9991872.874934
41.1252461.9999402.958271
51.0417421.9999962.986087
61.0139142.0000002.995362
71.0046382.0000002.998454
81.0015462.0000002.999485
91.0005152.0000002.999828
101.0001722.0000002.999943
111.0000572.0000002.999981
121.0000192.0000002.999994
131.0000062.0000002.999998
141.0000022.0000002.999999
151.0000012.0000003.000000
161.0000002.0000003.000000
171.0000002.0000003.000000
181.0000002.0000003.000000
191.0000002.0000003.000000
201.0000002.0000003.000000
211.0000002.0000003.000000
221.0000002.0000003.000000
231.0000002.0000003.000000
241.0000002.0000003.000000
251.0000002.0000003.000000
261.0000002.0000003.000000
271.0000002.0000003.000000
281.0000002.0000003.000000
291.0000002.0000003.000000
301.0000002.0000003.000000
311.0000002.0000003.000000
321.0000002.0000003.000000
331.0000002.0000003.000000
Jadi:
x1 = 1
x2 = 2
x3 = 3
Keterangan:
k : nomor iterasi
3. Metode SOR
9x1 + 2x2 + 9x3 = 40 ≫≫≫ x1 = (40 - 2x2 - 9x3)/9
2x1 + 6x2 + 2x3 = 20 ≫≫≫ x2 = (20 - 2x1 - 2x3)/6
2x1 + 2x2 + 6x3 = 24 ≫≫≫ x3 = (24 - 2x1 – 2x2)/6
Dipilih w = 1,1

kx1x2x3w
00001.1
14.8888891.8740741.9202471.1
21.8296212.1043082.7655351.1
31.1494522.0207412.9610421.1
41.0228382.0038362.9941151.1
51.0032522.0005822.9991831.1
61.0004312.0000832.9998931.1
71.0000542.0000112.9999871.1
81.0000062.0000012.9999981.1
91.0000012.0000003.0000001.1
101.0000002.0000003.0000001.1
111.0000002.0000003.0000001.1
121.0000002.0000003.0000001.1
131.0000002.0000003.0000001.1
141.0000002.0000003.0000001.1
151.0000002.0000003.0000001.1
161.0000002.0000003.0000001.1
171.0000002.0000003.0000001.1
181.0000002.0000003.0000001.1
191.0000002.0000003.0000001.1
201.0000002.0000003.0000001.1
211.0000002.0000003.0000001.1
221.0000002.0000003.0000001.1
231.0000002.0000003.0000001.1
241.0000002.0000003.0000001.1
251.0000002.0000003.0000001.1
261.0000002.0000003.0000001.1
271.0000002.0000003.0000001.1
281.0000002.0000003.0000001.1
291.0000002.0000003.0000001.1
301.0000002.0000003.0000001.1
311.0000002.0000003.0000001.1
321.0000002.0000003.0000001.1
331.0000002.0000003.0000001.1
341.0000002.0000003.0000001.1
351.0000002.0000003.0000001.1
361.0000002.0000003.0000001.1
371.0000002.0000003.0000001.1
381.0000002.0000003.0000001.1
391.0000002.0000003.0000001.1
401.0000002.0000003.0000001.1
411.0000002.0000003.0000001.1
421.0000002.0000003.0000001.1
431.0000002.0000003.0000001.1
441.0000002.0000003.0000001.1
451.0000002.0000003.0000001.1
461.0000002.0000003.0000001.1
471.0000002.0000003.0000001.1
481.0000002.0000003.0000001.1
491.0000002.0000003.0000001.1
501.0000002.0000003.0000001.1
Jadi:
x1 = 1
x2 = 2
x3 = 3
Keterangan:
k : nomor iterasi
w : parameter SOR 0<w<2
Untuk mendownload file di atas, silahkan klik link di bawah ini: