JAWABAN UJIAN MID TERTULIS
METODE NUMERIK
OLEH:
SARWIATI
F1A112007
PROGRAM STUDI MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS HALU OLEO
KENDARI
2013
BAGIAN I. Mencari Akar Persamaan Non Linear
1. Mencari nilai x yang memenuhi persamaan x2 – 7 = 0 dengan Metode Bagi Dua.
f(x)=x^2-7=0 dengan interval [2,3]
| n | an | bn | xn | f(an) | f(bn) | f(xn) | eh |
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 2.5 | -3 | 2 | -0.75 | |
| 2 | 2.5 | 3 | 2.75 | -0.75 | 2 | 0.5625 | 9.09% |
| 3 | 2.5 | 2.75 | 2.625 | -0.75 | 0.5625 | -0.109375 | -4.76% |
| 4 | 2.625 | 2.75 | 2.6875 | -0.109375 | 0.5625 | 0.22265625 | 2.33% |
| 5 | 2.625 | 2.6875 | 2.65625 | -0.109375 | 0.22265625 | 0.055664063 | -1.18% |
| 6 | 2.625 | 2.65625 | 2.640625 | -0.109375 | 0.055664063 | -0.027099609 | -0.59% |
| 7 | 2.640625 | 2.65625 | 2.6484375 | -0.027099609 | 0.055664063 | 0.014221191 | 0.29% |
| 8 | 2.640625 | 2.6484375 | 2.64453125 | -0.027099609 | 0.014221191 | -0.006454468 | -0.15% |
| 9 | 2.64453125 | 2.6484375 | 2.646484375 | -0.006454468 | 0.014221191 | 0.003879547 | 0.07% |
| 10 | 2.64453125 | 2.646484375 | 2.645507813 | -0.006454468 | 0.003879547 | -0.001288414 | -0.04% |
| 11 | 2.645507813 | 2.646484375 | 2.645996094 | -0.001288414 | 0.003879547 | 0.001295328 | 0.02% |
| 12 | 2.645507813 | 2.645996094 | 2.645751953 | -0.001288414 | 0.001295328 | 3.39746E-06 | -0.01% |
| 13 | 2.645507813 | 2.645751953 | 2.645629883 | -0.001288414 | 3.39746E-06 | -0.000642523 | 0.00% |
| 14 | 2.645629883 | 2.645751953 | 2.645690918 | -0.000642523 | 3.39746E-06 | -0.000319567 | 0.00% |
| 15 | 2.645690918 | 2.645751953 | 2.645721436 | -0.000319567 | 3.39746E-06 | -0.000158085 | 0.00% |
Keterangan:
n : nomor iterasi
a : ujung kiri
b : ujung kanan
xn : hampiran akar
eh : persen galat relatif
2. Mencari nilai x yang memenuhi persamaan x^2 – 7 = 0 dengan Metode Posisi Palsu.
f(x)=x^2-7=0 dengan interval [2,3]
| n | an | bn | xn | f(an) | f(bn) | f(xn) | eh |
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 2.6 | -3.00000000 | 2 | -0.24000000 | |
| 2 | 2.6 | 3 | 2.642857143 | -0.24000000 | 2 | -0.01530612 | 1.62162162% |
| 3 | 2.642857143 | 3 | 2.64556962 | -0.01530612 | 2 | -0.00096138 | 0.10252905% |
| 4 | 2.64556962 | 3 | 2.64573991 | -0.00096138 | 2 | -0.00006033 | 0.00643639% |
| 5 | 2.64573991 | 3 | 2.645750596 | -0.00006033 | 2 | -0.00000379 | 0.00040387% |
| 6 | 2.645750596 | 3 | 2.645751266 | -0.00000379 | 2 | -0.00000024 | 0.00002534% |
| 7 | 2.645751266 | 3 | 2.645751308 | -0.00000024 | 2 | -0.00000001 | 0.00000159% |
| 8 | 2.645751308 | 3 | 2.645751311 | -0.00000001 | 2 | 0.00000000 | 0.00000010% |
| 9 | 2.645751311 | 3 | 2.645751311 | 0.00000000 | 2 | 0.00000000 | 0.00000001% |
| 10 | 2.645751311 | 3 | 2.645751311 | 0.00000000 | 2 | 0.00000000 | 0.00000000% |
| 11 | 2.645751311 | 3 | 2.645751311 | 0.00000000 | 2 | 0.00000000 | 0.00000000% |
| 12 | 2.645751311 | 3 | 2.645751311 | 0.00000000 | 2 | 0.00000000 | 0.00000000% |
| 13 | 2.645751311 | 3 | 2.645751311 | 0.00000000 | 2 | 0.00000000 | 0.00000000% |
| 14 | 2.645751311 | 3 | 2.645751311 | 0.00000000 | 2 | 0.00000000 | 0.00000000% |
| 15 | 2.645751311 | 3 | 2.645751311 | 0.00000000 | 2 | 0.00000000 | 0.00000000% |
Keterangan:
n : nomor iterasi
a : ujung kiri
b : ujung kanan
xn : hampiran akar
eh : persen galat relatif
3. Mencari nilai x yang memenuhi persamaan x^2 – 7 = 0 dengan Metode Iterasi Titik Tetap.
f(x)=x^2-7=0 dengan tebakan awal x0 = 1,5
Kasus I. x=7/x
| n | x | eh |
|---|---|---|
| 0 | 1.5 | |
| 1 | 4.666666667 | 67.86% |
| 2 | 1.5 | -211.11% |
| 3 | 4.666666667 | 67.86% |
| 4 | 1.5 | -211.11% |
| 5 | 4.666666667 | 67.86% |
| 6 | 1.5 | -211.11% |
| 7 | 4.666666667 | 67.86% |
| 8 | 1.5 | -211.11% |
| 9 | 4.666666667 | 67.86% |
| 10 | 1.5 | -211.11% |
| 11 | 4.666666667 | 67.86% |
| 12 | 1.5 | -211.11% |
| 13 | 4.666666667 | 67.86% |
| 14 | 1.5 | -211.11% |
| 15 | 4.666666667 | 67.86% |
| 16 | 1.5 | -211.11% |
| 17 | 4.666666667 | 67.86% |
| 18 | 1.5 | -211.11% |
| 19 | 4.666666667 | 67.86% |
| 20 | 1.5 | -211.11% |
| 21 | 4.666666667 | 67.86% |
| 22 | 1.5 | -211.11% |
| 23 | 4.666666667 | 67.86% |
| 24 | 1.5 | -211.11% |
| 25 | 4.666666667 | 67.86% |
| 26 | 1.5 | -211.11% |
| 27 | 4.666666667 | 67.86% |
| 28 | 1.5 | -211.11% |
Keterangan:
n : nomor iterasi
xn : hampiran akar
eh : persen galat relatif
Kasus II. x=x-(x^2-7)
| n | x | eh |
|---|---|---|
| 0 | 1.5 | |
| 1 | 6.25 | 76.00% |
| 2 | -25.8125 | 124.21% |
| 3 | -685.0976563 | 96.23% |
| 4 | -470036.8963 | 99.85% |
| 5 | -2.20935E+11 | 100.00% |
| 6 | -4.88123E+22 | 100.00% |
| 7 | -2.38264E+45 | 100.00% |
| 8 | -5.677E+90 | 100.00% |
| 9 | -3.2228E+181 | 100.00% |
Kasus III. x=x-(x^2-7)/4
| n | x | eh |
|---|---|---|
| 0 | 1.5 | |
| 1 | 2.6875 | 44.19% |
| 2 | 2.631835938 | -2.12% |
| 3 | 2.650195837 | 0.69% |
| 4 | 2.644311343 | -0.22% |
| 5 | 2.646215723 | 0.07% |
| 6 | 2.64560131 | -0.02% |
| 7 | 2.645799737 | 0.01% |
| 8 | 2.645735675 | 0.00% |
| 9 | 2.64575636 | 0.00% |
| 10 | 2.645749681 | 0.00% |
| 11 | 2.645751837 | 0.00% |
| 12 | 2.645751141 | 0.00% |
| 13 | 2.645751366 | 0.00% |
| 14 | 2.645751293 | 0.00% |
| 15 | 2.645751317 | 0.00% |
| 16 | 2.645751309 | 0.00% |
| 17 | 2.645751312 | 0.00% |
| 18 | 2.645751311 | 0.00% |
| 19 | 2.645751311 | 0.00% |
| 20 | 2.645751311 | 0.00% |
| 21 | 2.645751311 | 0.00% |
| 22 | 2.645751311 | 0.00% |
| 23 | 2.645751311 | 0.00% |
| 24 | 2.645751311 | 0.00% |
| 25 | 2.645751311 | 0.00% |
| 26 | 2.645751311 | 0.00% |
| 27 | 2.645751311 | 0.00% |
| 28 | 2.645751311 | 0.00% |
4. Mencari nilai x yang memenuhi persamaan x2 – 7 = 0 dengan Metode Newton Raphson.
f(x)=x^2-7=0 dengan tebakan awal x0 = 1,5
f(x)=x^2-7≫≫≫f^' (x)=2x
≫x=x-(x^2-7)/2x
| n | xn | eh |
|---|---|---|
| 0 | 1.5 | |
| 1 | 3.083333333 | 51.35% |
| 2 | 2.676801802 | -15.19% |
| 3 | 2.645931402 | -1.17% |
| 4 | 2.645751317 | -0.01% |
| 5 | 2.645751311 | 0.00% |
Keterangan:
n : nomor iterasi
xn : hampiran akar
eh : persen galat relative
5. Metode garis potong untuk menyelesaikan x^2-7=0 dengan tebakan awal 1 dan 4.
f(x)=x^2-7 dengan: tebakan awal pertama = 1 ; tebakan awal kedua = 4.
| n | xn | eh |
|---|---|---|
| n | xn | eh |
| -1 | 1 | |
| 0 | 4 | |
| 1 | 2.2 | |
| 2 | 2.548387097 | 13.67% |
| 3 | 2.654891304 | 4.01% |
| 4 | 2.645580283 | -0.35% |
| 5 | 2.645751016 | 0.01% |
| 6 | 2.645751311 | 0.00% |
Keterangan:
n : nomor iterasi
xn : hampiran akar
eh : persen galat relatif
BAGIAN II. Menyelesaikan sistem persamaan linear
Menentukan nilai x1, x2, x3 dari sistem persamaan linear:
9x1 + 2x2 + 9x3 = 40
2x1 + 6x2 + 2x3 = 20
2x1 + 2x2 + 6x3 = 24
Dengan menggunakan metode:
1. Metode Jacoby
9x1 + 2x2 + 9x3 = 40 ≫≫≫ x1 = (40 - 2x2 - 9x3)/9
2x1 + 6x2 + 2x3 = 20 ≫≫≫ x2 = (20 - 2x1 - 2x3)/6
2x1 + 2x2 + 6x3 = 24 ≫≫≫ x3 = (24 - 2x1 – 2x2)/6
| k | x1 | x2 | x3 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1 | 4.444444444 | 3.333333 | 4 |
| 2 | -0.296296296 | 0.518519 | 1.407407 |
| 3 | 2.9218107 | 2.962963 | 3.925926 |
| 4 | -0.139917695 | 1.050754 | 2.038409 |
| 5 | 2.172534675 | 2.700503 | 3.696388 |
| 6 | 0.147944927 | 1.377026 | 2.375654 |
| 7 | 1.76278458 | 2.492134 | 3.491676 |
| 8 | 0.398960562 | 1.581846 | 2.581694 |
| 9 | 1.511229113 | 2.339782 | 3.339731 |
| 10 | 0.584761892 | 1.716347 | 2.71633 |
| 11 | 1.346704402 | 2.232969 | 3.232964 |
| 12 | 0.715265175 | 1.806777 | 2.806775 |
| 13 | 1.236163013 | 2.15932 | 3.159319 |
| 14 | 0.805276407 | 1.868173 | 2.868172 |
| 15 | 1.161122588 | 2.10885 | 3.10885 |
| 16 | 0.866960691 | 1.910009 | 2.910009 |
| 17 | 1.10998899 | 2.074343 | 3.074343 |
| 18 | 0.909135809 | 1.938556 | 2.938556 |
| 19 | 1.075098395 | 2.050769 | 3.050769 |
| 20 | 0.937948458 | 1.958044 | 2.958044 |
| 21 | 1.05127949 | 2.034669 | 3.034669 |
| 22 | 0.957626579 | 1.97135 | 2.97135 |
| 23 | 1.035016118 | 2.023674 | 3.023674 |
| 24 | 0.971064715 | 1.980437 | 2.980437 |
| 25 | 1.023910921 | 2.016166 | 3.016166 |
| 26 | 0.980241244 | 1.986641 | 2.986641 |
| 27 | 1.016327738 | 2.011039 | 3.011039 |
| 28 | 0.986507557 | 1.990878 | 2.990878 |
| 29 | 1.011149523 | 2.007538 | 3.007538 |
| 30 | 0.990786571 | 1.993771 | 2.993771 |
| 31 | 1.007613541 | 2.005148 | 3.005148 |
| 32 | 0.993708534 | 1.995746 | 2.995746 |
| 33 | 1.005198968 | 2.003515 | 3.003515 |
| 34 | 0.995703821 | 1.997095 | 2.997095 |
| 35 | 1.003550158 | 2.0024 | 3.0024 |
| 36 | 0.997066319 | 1.998017 | 2.998017 |
| 37 | 1.002424254 | 2.001639 | 3.001639 |
| 38 | 0.997996712 | 1.998646 | 2.998646 |
| 39 | 1.001655422 | 2.001119 | 3.001119 |
| 40 | 0.998632038 | 1.999075 | 2.999075 |
| 41 | 1.001130418 | 2.000764 | 3.000764 |
| 42 | 0.999065876 | 1.999368 | 2.999368 |
| 43 | 1.000771915 | 2.000522 | 3.000522 |
| 44 | 0.999362126 | 1.999569 | 2.999569 |
| 45 | 1.000527109 | 2.000356 | 3.000356 |
| 46 | 0.999564422 | 1.999706 | 2.999706 |
| 47 | 1.000359941 | 2.000243 | 3.000243 |
| 48 | 0.999702562 | 1.999799 | 2.999799 |
| 49 | 1.000245788 | 2.000166 | 3.000166 |
| 50 | 0.999796892 | 1.999863 | 2.999863 |
| 51 | 1.000167839 | 2.000113 | 3.000113 |
| 52 | 0.999861306 | 1.999906 | 2.999906 |
| 53 | 1.00011461 | 2.000077 | 3.000077 |
| 54 | 0.999905292 | 1.999936 | 2.999936 |
| 55 | 1.000078262 | 2.000053 | 3.000053 |
| 56 | 0.999935328 | 1.999956 | 2.999956 |
| 57 | 1.000053442 | 2.000036 | 3.000036 |
| 58 | 0.999955838 | 1.99997 | 2.99997 |
| 59 | 1.000036493 | 2.000025 | 3.000025 |
| 60 | 0.999969844 | 1.99998 | 2.99998 |
| 61 | 1.00002492 | 2.000017 | 3.000017 |
| 62 | 0.999979407 | 1.999986 | 2.999986 |
| 63 | 1.000017017 | 2.000012 | 3.000012 |
| 64 | 0.999985938 | 1.99999 | 2.99999 |
| 65 | 1.00001162 | 2.000008 | 3.000008 |
| 66 | 0.999990398 | 1.999994 | 2.999994 |
| 67 | 1.000007935 | 2.000005 | 3.000005 |
| 68 | 0.999993443 | 1.999996 | 2.999996 |
| 69 | 1.000005418 | 2.000004 | 3.000004 |
| 70 | 0.999995523 | 1.999997 | 2.999997 |
| 71 | 1.0000037 | 2.000003 | 3.000003 |
| 72 | 0.999996943 | 1.999998 | 2.999998 |
| 73 | 1.000002527 | 2.000002 | 3.000002 |
| 74 | 0.999997912 | 1.999999 | 2.999999 |
| 75 | 1.000001725 | 2.000001 | 3.000001 |
| 76 | 0.999998574 | 1.999999 | 2.999999 |
| 77 | 1.000001178 | 2.000001 | 3.000001 |
| 78 | 0.999999026 | 1.999999 | 2.999999 |
| 79 | 1.000000804 | 2.000001 | 3.000001 |
| 80 | 0.999999335 | 2 | 3 |
| 81 | 1.000000549 | 2 | 3 |
| 82 | 0.999999546 | 2 | 3 |
| 83 | 1.000000375 | 2 | 3 |
| 84 | 0.99999969 | 2 | 3 |
| 85 | 1.000000256 | 2 | 3 |
| 86 | 0.999999788 | 2 | 3 |
| 87 | 1.000000175 | 2 | 3 |
| 88 | 0.999999855 | 2 | 3 |
| 89 | 1.000000119 | 2 | 3 |
| 90 | 0.999999901 | 2 | 3 |
| 91 | 1.000000082 | 2 | 3 |
| 92 | 0.999999933 | 2 | 3 |
| 93 | 1.000000056 | 2 | 3 |
| 94 | 0.999999954 | 2 | 3 |
| 95 | 1.000000038 | 2 | 3 |
| 96 | 0.999999969 | 2 | 3 |
| 97 | 1.000000026 | 2 | 3 |
| 98 | 0.999999979 | 2 | 3 |
| 99 | 1.000000018 | 2 | 3 |
| 100 | 0.999999985 | 2 | 3 |
| 101 | 1.000000012 | 2 | 3 |
| 102 | 0.99999999 | 2 | 3 |
| 103 | 1.000000008 | 2 | 3 |
| 104 | 0.999999993 | 2 | 3 |
| 105 | 1.000000006 | 2 | 3 |
| 106 | 0.999999995 | 2 | 3 |
| 107 | 1.000000004 | 2 | 3 |
| 108 | 0.999999997 | 2 | 3 |
| 109 | 1.000000003 | 2 | 3 |
| 110 | 0.999999998 | 2 | 3 |
| 111 | 1.000000002 | 2 | 3 |
| 112 | 0.999999999 | 2 | 3 |
| 113 | 1.000000001 | 2 | 3 |
| 114 | 0.999999999 | 2 | 3 |
| 115 | 1.000000001 | 2 | 3 |
| 116 | 0.999999999 | 2 | 3 |
| 117 | 1.000000001 | 2 | 3 |
| 118 | 1 | 2 | 3 |
| 119 | 1 | 2 | 3 |
| 120 | 1 | 2 | 3 |
| 121 | 1 | 2 | 3 |
Jadi:
x1 = 1
x2 = 2
x3 = 3
Keterangan:
k : nomor iterasi
2. Metode Gauss Seidel
9x1 + 2x2 + 9x3 = 40 ≫≫≫ x1 = (40 - 2x2 - 9x3)/9
2x1 + 6x2 + 2x3 = 20 ≫≫≫ x2 = (20 - 2x1 - 2x3)/6
2x1 + 2x2 + 6x3 = 24 ≫≫≫ x3 = (24 - 2x1 – 2x2)/6
| k | x1 | x2 | x3 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1 | 4.444444 | 1.851852 | 1.901235 |
| 2 | 2.131687 | 1.989026 | 2.626429 |
| 3 | 1.376010 | 1.999187 | 2.874934 |
| 4 | 1.125246 | 1.999940 | 2.958271 |
| 5 | 1.041742 | 1.999996 | 2.986087 |
| 6 | 1.013914 | 2.000000 | 2.995362 |
| 7 | 1.004638 | 2.000000 | 2.998454 |
| 8 | 1.001546 | 2.000000 | 2.999485 |
| 9 | 1.000515 | 2.000000 | 2.999828 |
| 10 | 1.000172 | 2.000000 | 2.999943 |
| 11 | 1.000057 | 2.000000 | 2.999981 |
| 12 | 1.000019 | 2.000000 | 2.999994 |
| 13 | 1.000006 | 2.000000 | 2.999998 |
| 14 | 1.000002 | 2.000000 | 2.999999 |
| 15 | 1.000001 | 2.000000 | 3.000000 |
| 16 | 1.000000 | 2.000000 | 3.000000 |
| 17 | 1.000000 | 2.000000 | 3.000000 |
| 18 | 1.000000 | 2.000000 | 3.000000 |
| 19 | 1.000000 | 2.000000 | 3.000000 |
| 20 | 1.000000 | 2.000000 | 3.000000 |
| 21 | 1.000000 | 2.000000 | 3.000000 |
| 22 | 1.000000 | 2.000000 | 3.000000 |
| 23 | 1.000000 | 2.000000 | 3.000000 |
| 24 | 1.000000 | 2.000000 | 3.000000 |
| 25 | 1.000000 | 2.000000 | 3.000000 |
| 26 | 1.000000 | 2.000000 | 3.000000 |
| 27 | 1.000000 | 2.000000 | 3.000000 |
| 28 | 1.000000 | 2.000000 | 3.000000 |
| 29 | 1.000000 | 2.000000 | 3.000000 |
| 30 | 1.000000 | 2.000000 | 3.000000 |
| 31 | 1.000000 | 2.000000 | 3.000000 |
| 32 | 1.000000 | 2.000000 | 3.000000 |
| 33 | 1.000000 | 2.000000 | 3.000000 |
Jadi:
x1 = 1
x2 = 2
x3 = 3
Keterangan:
k : nomor iterasi
3. Metode SOR
9x1 + 2x2 + 9x3 = 40 ≫≫≫ x1 = (40 - 2x2 - 9x3)/9
2x1 + 6x2 + 2x3 = 20 ≫≫≫ x2 = (20 - 2x1 - 2x3)/6
2x1 + 2x2 + 6x3 = 24 ≫≫≫ x3 = (24 - 2x1 – 2x2)/6
Dipilih w = 1,1
| k | x1 | x2 | x3 | w |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1.1 |
| 1 | 4.888889 | 1.874074 | 1.920247 | 1.1 |
| 2 | 1.829621 | 2.104308 | 2.765535 | 1.1 |
| 3 | 1.149452 | 2.020741 | 2.961042 | 1.1 |
| 4 | 1.022838 | 2.003836 | 2.994115 | 1.1 |
| 5 | 1.003252 | 2.000582 | 2.999183 | 1.1 |
| 6 | 1.000431 | 2.000083 | 2.999893 | 1.1 |
| 7 | 1.000054 | 2.000011 | 2.999987 | 1.1 |
| 8 | 1.000006 | 2.000001 | 2.999998 | 1.1 |
| 9 | 1.000001 | 2.000000 | 3.000000 | 1.1 |
| 10 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 11 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 12 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 13 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 14 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 15 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 16 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 17 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 18 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 19 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 20 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 21 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 22 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 23 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 24 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 25 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 26 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 27 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 28 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 29 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 30 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 31 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 32 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 33 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 34 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 35 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 36 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 37 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 38 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 39 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 40 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 41 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 42 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 43 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 44 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 45 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 46 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 47 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 48 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 49 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
| 50 | 1.000000 | 2.000000 | 3.000000 | 1.1 |
Jadi:
x1 = 1
x2 = 2
x3 = 3
Keterangan:
k : nomor iterasi
w : parameter SOR 0<w<2
Untuk mendownload file di atas, silahkan klik link di bawah ini:
